Fixer in paperback!

Look, a Fixer paperback!


Fixer is now available as a high quality paperback. (Yay!) I picked cream-colored paper for the interior, because I think it’s easier on the eyes. The cover has been reformatted and the Map of the Quest is a black and white two page spread.

You can buy your own Fixer paperback book on Amazon.

Fixer is still available for free online at, on Kobo, on Apple iBooks, and for $.99 on Kindle.

If you like the book, please leave a review on Amazon or Goodreads, or tell your friends about the book! Thanks!

Goodbye Radio Shack. But weren’t you already dead?


When I was 10, I started taking things apart. I disassembled toys, record players, telephones. If I looked at the mechanical parts long enough, they started to speak to me, and I understood them. But the electronics were just mysterious multicolored parts. I couldn’t get them to talk to me. My parents had backgrounds in linguistics and art. They couldn’t teach me electronics, but they helped me in the best way possible. They didn’t take away my screwdriver.


All that’s left of Mom’s 1960s era Sunbeam hairdryer. Sorry, Mom.

The first time I walked into a Radio Shack store was in the early 1970s. There they were, all the electronic parts that had baffled me, hung on the walls in neat packages. There were soldering irons and do-it-yourself kits for beginners. Best of all there were books, explaining how everything worked. I had found my place.

1981 Radio Shack Semiconductor Reference Guide. I wore these things to tatters.

1982 Radio Shack Semiconductor Reference Guide. I wore these things to tatters.


A card-carrying nerd!

Soon I was saving all my money for trips to Radio Shack. They had a card that entitled you to one free battery per month. I kept that card in my wallet. Every month a flier would arrive in the mail with my name on it, and I eagerly leafed through it. Books were on sale! I needed more books. Prototype boards? Perfect for the microcomputer I was designing. A voice actuated five channel FM transceiver? I wasn’t sure what that was good for, but I bought three.


Turns out these were good for something. You could put on the headphones and pretend to be out for a stroll, listening to tunes on your Walkman. What you were really listening to was conversations from every cordless phone and baby monitor within two hundred feet. Parents, see how educational electronics can be?

After school I spent hours sitting at a workbench in my room, books open, parts all laid out, building things. I started with educational kits, then moved on to creating my own inventions. Things that just needed to exist, but no sane, bottom-line-focused company would ever mass-produce. A tie clip that counted in binary. A talking alarm clock. A night light you could turn off by whistling. A remote-controlled vacuum cleaner. A confetti cannon. Insulated rubber gloves that would produce a 20,000 volt arc across the fingertips. A frying pan for Play-doh. My parents were just happy I wasn’t doing drugs.

Memory card for a microcomputer I built.

Memory card for a microcomputer I designed and built.

Sometimes the salesmen at Radio Shack tried to fill my appetite for knowledge, but more and more often I found I knew more than they did. In the 80s, Radio Shack stores had some of the very first personal computers, and when no one was looking, I’d type a quick BASIC program into the display model that would put it into an infinite loop. Most of the salesmen didn’t know how to stop it.


The original TRS-80 model I. Your smartphone has 1000 times more memory.

But in the 90s, Radio Shack changed. One day I walked into a store and all my beloved parts were gone from the walls. In their place were consumer electronics; cordless phones, CD players, and high-end TVs. When I finally got a salesman to pay attention to me, and asked where I could find the parts, I was shown a pitiful rack of drawers tucked in the back of the store. I went home and removed the Radio Shack battery card from my wallet.



By the time I had gotten my first job as an electrical engineer, I’d found other sources for electronic parts. First through mail order catalogs and later the internet. I occasionally went back to Radio Shack when I needed to pick up something right away, but it was no longer my place. My Radio Shack had died.

Over the years I watched from a distance as the new Radio Shack floundered against bigger consumer electronics stores like Best Buy and Circuit City. Electronics became harder for the consumer to repair themselves. Sometimes you couldn’t even open them with a screwdriver. I didn’t think there was any way the old Radio Shack could ever come back.

But then came the new age of tinkering. Elementary schools started teaching classes in robotics. Cheap microcontrollers allowed today’s kids to build things I’d only dreamed of. A full-blown computer on a tiny board now cost $35. 3D printers became inexpensive enough for home use. Could Radio Shack grab onto this new wave? I’d heard rumors that Radio Shack planned on reinventing itself, and they were going to run an ad during the 2014 Super Bowl. Would they welcome the experimenter back? Could Radio Shack be my place again?

Then I saw the ad. This one:

Radio Shack didn’t want the experimenter, playing with technology, they wanted the 30-year-old, looking for a pre-packaged product. Worse yet, Radio Shack was trying to do it using pop icons from the 80s that their 30-year-old would not even remember. I knew then that my Radio Shack would never return from the grave.

On Feb 5, 2015, Radio Shack filed for bankruptcy. Goodbye, old friend, I’ll miss you. But I did all my mourning years ago.


60/40 rosin-core solder. Nobody makes this any more because of concerns about lead poisoning, but I still have a few rolls, and I still have my soldering iron. When you touch the solder to the tip of the hot iron, the rosin flux vaporizes and a little wisp of smoke curls past your face. If I close my eyes and breathe in, I’m a teenager again, sitting at my work bench, parts spread in front of me, books open. This is my place.


Salesman Repellent

I have invented Salesman Repellent.

Salesmen lurk inside stores in the mall, buzz around the isles in consumer electronics outlets, and hide behind signs in used car lots, waiting to descend in swarms on unsuspecting victims. For years I’ve been trying to develop a solution to this scourge.

First I tried to ward off attacking salesmen by backing away while shouting defensively:
     “I’m just looking!”
This used to work, but modern salesmen have developed a resistance to this defense, and it no longer has any effect on them.

I tried being rude:
     RadioShack Salesman: “Dude, can I help you?”
     Me (raising an eyebrow): “I doubt that very much.”

I even had a custom T-shirt made that said “No, you CAN’T help me” and I’d put it on before entering danger zones. This just seemed to attract the pests; they flew in undeterred.
     Furniture Salesman: “Hey, that’s a great t-shirt! So, looking for a new mattress?”

But finally I happened on the perfect formula. It works by using an ingrained behavioral mechanism that even the most bloodthirsty salesman can’t break. It seemed too good to be true, so I tested it. It worked in appliance stores. It worked on Apple Store salesmen. I even braced myself and did a field test at a car dealership. After the initial approach, the salesman veered away and did not attack!

At first I thought I’d patent my salesman repellent and make millions. But then I realized the invention was too important to the progress of mankind to keep it to myself, so I’m giving it to you, free of charge! Here it is:


I know, it’s just a bluetooth headset. That’s not the brilliant part. The brilliant part is how you use it. The headset doesn’t need to be expensive. It doesn’t need to be functional. Heck, you don’t even need to own a phone! Keep it in your car, and before you go into a store that you suspect may be infested with salesmen, put the headset in your ear. As you enter the store, say something obvious out loud.
     “I’m going into the store now!”

If a salesman does approach you, don’t panic. Do not make eye contact, and say something that he can’t possibly interpret as conversation aimed at him.
     “You want me to check for what?”
Salesmen have a built-in inhibition against interrupting a cellphone conversation and will immediately back off. Very aggressive salesmen, such as the ones who inhabit used car lots, may need an additional treatment. Hold up your palm toward them, cup your other hand to your ear and say,
     “What? You’re breaking up.”
The salesman will veer away.

If multiple salesmen swarm, you may need to repeat the deterrent action, but soon they will retreat, hover at a distance, and wait for you to finish your conversation. Of course, you never finish it. You can browse the merchandise peacefully, and every thirty seconds or so, say out loud,
     “Uh-huh. Sure. Okay.”
Keep doing this until you leave the store.

I know at this point you want to hand me money, but honestly, letting the world know about salesman repellent is reward enough for me. You’ll see me at the next Nobel prize awards ceremony. I’ll be the one surrounded by a circle of reporters, cupping my hand to my ear and shouting,
     “I’m going into the store now!”




Oh Snow, that soothes the broken ground
Transforms with pureness in the night
That smoothes the roughness, muffles sound
Paint it white, paint it white.

This jagged city, blackened streets
Erase its inky stains from sight
Cover all with sparkling sheets
Paint it white! Paint it white!

And that within my soul today
That fights against the flickering light
Let not the darkness win, I pray
Paint it white, Lord, paint it white.

How an Engine Works (Super-simplified with a Tricycle, a Sink, and Exploding Cars)

This post was adapted from a section I had to cut from an early draft of a book.

Today I’m going to explain how a gasoline engine works, using things you already understand: a tricycle wheel, a spray bottle, a syringe, and a bathroom sink.

Remember when you were little and you had a tricycle?


After you’d pedaled up and down the block a hundred times, you probably experimented with things like pedaling with just one foot. You discovered that if you pushed down hard enough, the momentum of the bike kept the wheel going and brought the pedal back up again.

Remember shuffling your shoes on the carpet and then touching your sister on the ear? (Don’t try to deny it, I know you did this.) Of course, zapping your sister would hurt you too, unless you figured out that you could hold something metal in your hand, and that would conduct the electricity.


Another fun toy was the syringe.


You could fill the bathroom sink full of water, stick the syringe in, pull the plunger back and it would suck up water. Then you could press the plunger forward and shoot water at your sister.


And there was always the squirt bottle. Useful for squirting sisters or just misting yourself when it was hot.


What do these things have to do with a gasoline engine? Believe it or not, you already understand all the basic parts of an engine. Here’s a really simplified engine diagram.


Let’s start with the piston. This is a lot like the plunger in the syringe. It slides up and down inside a cylinder. When you pull the piston down, it sucks in air. When you push the piston up, it pushes the air out. The crank is like the pedal on your old tricycle and the connecting rod is like your leg. When you turn the wheel, the crank pushes the cylinder up and down. The valves you see at the top of the cylinder work just like the drain plug in your bathroom sink. They open and close to let air in or out of the cylinder.

Now let’s look at the fuel. You’d think from Hollywood movies that a tank of gasoline is a bomb, just waiting to go off. After all, any time a car goes off a cliff in a movie, as soon as it hits the bottom, it explodes in a big fireball.


Sadly, cars rarely explode in real life. Gasoline is flammable, but in order for it to explode, it needs to be mixed with air first. That’s the job of the carburetor (or in some engines, the fuel injector). It’s a lot like the spray bottle. It sprays fuel in small droplets so the fuel mixes with air. Once gasoline is mixed with air, it’s very dangerous; even a small spark will set it off.

That brings us to the spark plug. It’s really just an insulated piece of metal that sticks down into the cylinder.

Now let’s start things going and watch what happens. When you turn the ignition on a car, an electric starter motor turns the crank, which moves the piston.

First, the intake valve opens, and the cylinder starts down. This sucks in air, and the carburetor sprays fuel into the incoming air.


When the piston gets to the bottom, the intake valve closes, and the piston starts back up. This squishes the air and fuel together, which makes it even more explosive.


When the piston gets to the top, a high voltage charge is sent to the spark plug, which makes a spark inside the cylinder.


The fuel/air mixture explodes, and the explosion forces the piston down.


As the piston is forced down, it turns the crank. This is like stepping hard on the pedal of the tricycle wheel. The momentum from this stroke will keep the crank turning, so we don’t need the starter motor any more.

When the piston gets to the bottom, the exhaust valve opens. Then the piston starts back up, pushing the exhaust gasses (the smoke) out of the cylinder, and out the exhaust pipe.


When the piston gets to the top of the cylinder, the exhaust valve closes, the intake valve opens, and the cycle starts all over again.

Real engines are a bit more complicated than this super-simplified example, but all gasoline engines work on these basic principles.

Now go apologize to your sister.

How the GPS System Works (Super-simplified with Battleship and The Da Vinci Code)

This post is adapted from a section I had to cut from an early draft of a book.

Super-simplified explanation of the GPS system

I’m going to explain how the Global Positioning System works. But first we’re going to play a game and then read The Da Vinci Code.

A quick game

This game is called “Og Hunt.” It’s a bit like the classic game, Battleship, but in this case you don’t just find out if you hit or missed the target, I’ll also tell you how far away you were.

We’ll play this game on graph paper, starting with a grid.


The Og is hidden somewhere in this grid, but you don’t know where. So you take a random guess, and say “B2.”

I tell you, “You missed. You were five squares away from the Og.”

Now you could just keep trying coordinates randomly, until you hit the Og, but this could take a lot of guesses. But you’re smarter than the average bear. So you pull out the compass you carry with you for just such an occasion, and you draw a circle with a radius of five, with the center at the point B2.


Since B2 was 5 squares away from the Og, you know your target must lie somewhere on that circle. Now you make a second guess. “B7.”

I tell you, “You missed. You are 3.16 squares away from the Og.”

You know you’re getting closer, but more importantly, you can draw another circle.


You know the Og must be somewhere along that circle you’ve just drawn, and it also must be on the first circle. The circles cross in two places, so the Og must be at one of those two intersections. Aha! One of the intersections lies outside the grid, so you know the Og must be at the other intersection, at E7.

“Hit! You found the Og!”


Well, that was fun! Now let’s get on with learning how the Global Positioning System works.

Lots of satellites

The first part of the GPS system is 32 satellites, circling the earth in all sorts of different orbits so that there are always at least 3 of them overhead, no matter where on the globe you are. Each satellite is constantly transmitting a radio message with two things in it: exactly where in space the satellite is at that moment, and the precise time it sent the message.


The second part of the GPS system is the receiver. There are dedicated GPS receivers, but you can also find them in car navigation systems and in most smart phones. You may have one in your pocket right now.

Bad science

Before we go on, let’s take a break and talk about how the GPS system doesn’t work, since there’s an awful lot of confusion about that. A good example of getting it wrong is in The Da Vinci Code:


“Look in your jacket’s left pocket,” Sophie said. “You’ll find proof they are watching you.”
Langdon felt his apprehension rising. Look in my pocket? It sounded like some kind of cheap magic trick.
“Just look.”
Bewildered, Langdon reached his hand into his tweed jacket’s left pocket – one he never used. Feeling around inside, he found nothing. What the devil did you expect? He began wondering if Sophie might just be insane after all. Then his fingers brushed something unexpected. Small and hard. Pinching the tiny object between his fingers, Langdon pulled it out and stared in astonishment. It was a metallic, button-shaped disk, about the size of a watch battery. He had never seen it before. “What the… ?”
“GPS tracking dot,” Sophie said. “Continuously transmits its location to a Global Positioning System satellite that DCPJ can monitor. We use them to monitor people’s locations. It’s accurate within two feet anywhere on the globe. They have you on an electronic leash. The agent who picked you up at the hotel slipped it inside your pocket before you left your room.”

A “GPS tracking dot” does not really exist, but the most important error in this scene is there’s a GPS receiver transmitting its location to a GPS satellite. In reality, it’s the other way around. The GPS satellites transmit their location to your GPS receiver. The GPS satellites don’t know where you are. A lot of movies and books make this mistake, so we won’t rip on Dan Brown much here.

So how does your smartphone know where you are?

Let’s say you’re lost, so you pull out your smartphone. At this point, your phone is actually just as lost as you; it has no idea of where you are. So how does it find out? Your phone turns on its GPS receiver, which listens to the GPS satellites overhead, which are sending radio messages about where they are and what time it is. So now it knows where the satellites are, but it still doesn’t know where it is. But here the receiver does a very neat trick. The radio messages take a small amount of time to travel from the satellite to the receiver. By comparing the time it was when the message was sent, to the time when the receiver gets the message, it can figure out how far away it is from the satellite.

Does this situation look familiar? It should; it’s the Og hunt game we played earlier. In the Og hunt, we knew several fixed points (the previous guesses) and how far away the Og was from them.

In the case of the GPS system, the receiver knows the locations of several points in space (the satellites) and how far it is from each of them. Given that information, the GPS receiver can figure out where it is. Since we are dealing with three dimensions now, the distance from a single satellite is a sphere rather than a circle. If we have two satellites, the intersection of the two spheres gives us a circle, and the intersection of three spheres give us two points. One of those points is going to be inside the earth or out in space, so we can ignore that one, and the remaining point tells us where on earth we are.

It took your phone just a few seconds to do this. Now it can display a map and show you where you are.

In reality, the system’s a bit more complicated than this super-simplified example. Because the clock in your phone is not as accurate as the expensive atomic clock in the GPS satellite, the GPS reciever actually needs four satellites to get the initial location fix. After that, it only needs three. This is one reason it can take a moment for your phone to locate itself at first, but after that it gets faster.

Imagine if early explorers had GPS technology! Columbus might have realized he was in a new land instead of in India, where he thought he was. He might have named the land after himself, and instead of calling the people “Indians”, they would have been “Columbos”! Okay, maybe it’s just as well Columbus never had a GPS.